Retinal is formed from apo-carotenoids in Nostoc sp. PCC7120: in vitro characterization of an apo-carotenoid oxygenase.

نویسندگان

  • Daniel Scherzinger
  • Sandra Ruch
  • Daniel P Kloer
  • Annegret Wilde
  • Salim Al-Babili
چکیده

The sensory rhodopsin from Anabaena (Nostoc) sp. PCC7120 is the first cyanobacterial retinylidene protein identified. Here, we report on NosACO (Nostoc apo-carotenoid oxygenase), encoded by the ORF (open reading frame) all4284, as the candidate responsible for the formation of the required chromophore, retinal. In contrast with the enzymes from animals, NosACO converts beta-apo-carotenals instead of beta-carotene into retinal in vitro. The identity of the enzymatic products was proven by HPLC and gas chromatography-MS. NosACO exhibits a wide substrate specificity with respect to chain lengths and functional end-groups, converting beta-apo-carotenals, (3R)-3-hydroxy-beta-apo-carotenals and the corresponding alcohols into retinal and (3R)-3-hydroxyretinal respectively. However, kinetic analyses revealed very divergent Km and Vmax values. On the basis of the crystal structure of SynACO (Synechocystis sp. PCC6803 apo-carotenoid oxygenase), a related enzyme showing similar enzymatic activity, we designed a homology model of the native NosACO. The deduced structure explains the absence of beta-carotene-cleavage activity and indicates that NosACO is a monotopic membrane protein. Accordingly, NosACO could be readily reconstituted into liposomes. To localize SynACO in vivo, a Synechocystis knock-out strain was generated expressing SynACO as the sole carotenoid oxygenase. Western-blot analyses showed that the main portion of SynACO occurred in a membrane-bound form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lycopene metabolism and its biological significance.

The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects...

متن کامل

Paralogs of the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins.

The photoactive Orange Carotenoid Protein (OCP) photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain is the active part of the protein, and the C-terminal domain regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins [HCPs]), paralogs of the N-terminal doma...

متن کامل

Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction.

Recent studies with the high-tillering mutants in rice (Oryza sativa), the max (more axillary growth) mutants in Arabidopsis thaliana and the rms (ramosus) mutants in pea (Pisum sativum) have indicated the presence of a novel plant hormone that inhibits branching in an auxin-dependent manner. The synthesis of this inhibitor is initiated by the two CCDs [carotenoid-cleaving (di)oxygenases] OsCCD...

متن کامل

Antioxidant activity of β-carotene compounds in different in vitro assays.

β-Carotene (BC) is the most abundant carotenoid in human diet, almost solely as(all-E)-isomer. Significant amounts of (Z)-isomers of BC are present in processed food as well as in mammalian tissues. Differences are described for the activity of various BC isomers in forming retinal and protecting against cancer and cardiovascular diseases. Eccentric cleavage of BC leads to degradation products ...

متن کامل

The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching.

Enzymes that are able to oxidatively cleave carotenoids at specific positions have been identified in animals and plants. The first such enzyme to be identified was a nine-cis-epoxy carotenoid dioxygenase from maize, which catalyzes the rate-limiting step of abscisic acid biosynthesis. Similar enzymes are necessary for the synthesis of vitamin A in animals and other carotenoid-derived molecules...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 398 3  شماره 

صفحات  -

تاریخ انتشار 2006